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The project

In a 2015 Dagstuhl seminar I asked “What do the Weihrauch
hierarchies look like once we go to very high levels of reverse
mathematics strength?”

In other words, I proposed to study the multi-valued functions
arising from theorems which lie around ATR0 and Π1

1-CA0.

People who have contributed to this project include Takayuki
Kihara, Arno Pauly, Jun Le Goh, Jeff Hirst, Paul-Elliot Anglès
d’Auriac, and my students Manlio Valenti and Vittorio Cipriani.
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Represented spaces

A representation σX of a set X is a surjective partial function
σX : ⊆NN → X.

The pair (X,σX) is a represented space.

If x ∈ X a σX -name for x is any p ∈ NN such that σX(p) = x.

Representations are analogous to the codings used in reverse
mathematics to speak about various mathematical objects in
subsystems of second order arithmetic.



The negative representation of closed
sets

Let (X,α, d) be a computable metric space.

In the negative representation of the set A−(X) of closed subsets
of X a name for the closed set C is a sequence of open balls with
center in D and rational radius whose union is X \ C.
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When X = NN or X = 2N the negative representation is
computably equivalent to the representation of C by a tree
T ⊆ N<N such that [T ] = C.



Realizers

If (X,σX) and (Y, σY ) are represented spaces and f : ⊆X ⇒ Y a
realizer for f is a function F : ⊆NN → NN such that
σY (F (p)) ∈ f(σX(p)) whenever f(σX(p)) is defined, i.e. whenever
p is a name of some x ∈ dom(f).

We write F ` f .

p ∈ NN F //

σX

��

F (p) ∈ NN

σY
��

x ∈ X //
f
// y ∈ f(x)

Notice that different names of the same x ∈ dom(f) might be
mapped by F to names of different elements of f(x).

f is computable if it has a computable realizer.



Weihrauch reducibility

Let f : ⊆X ⇒ Y and g : ⊆Z ⇒W be partial multi-valued
functions between represented spaces.

f is Weihrauch reducible to g if there are computable
Φ,Ψ : ⊆NN → NN such that for all G ` g we have that F ` f
where F (p) = Ψ(p,GΦ(p)).

Φ ΨG

F

p F (p)

In other words, for all names p ∈ NN for some x ∈ dom(f), we
have that Φ(p) is a name for some element of dom(g) and
Ψ(p,GΦ(p)) is a name for some element of f(x).

We write f ≤W g.



The Weihrauch lattice

≤W is reflexive and transitive and induces the equivalence relation
≡W. The ≡W-equivalence classes are called Weihrauch degrees.

The partial order on the sets of Weihrauch degrees is a distributive
bounded lattice with several natural and useful algebraic
operations: the Weihrauch lattice.



Products

The parallel product of f : ⊆X ⇒ Y and g : ⊆Z ⇒W is
f × g : ⊆X × Z ⇒ Y ×W defined by

(f × g)(x, z) = f(x)× g(z).

The compositional product f ? g satisfies

f ? g≡W max
≤W

{f1 ◦ g1 | f1≤W f ∧ g1≤W g}

and thus is the hardest problem that can be realized using first g,
then something computable, and finally f .



Parallelization

If f : ⊆X ⇒ Y is a multi-valued function, the (infinite)
parallelization of f is the multi-valued function f̂ : XN ⇒ Y N with
dom(f̂) = dom(f)N defined by f((xn)n∈N) =

∏
n∈N f(xn).

f̂ computes f countably many times in parallel.

f is parallelizable if f̂ ≡W f .

The finite parallelization of f is the multi-valued function
f∗ : X∗ ⇒ Y ∗ where X∗ =

⋃
i∈N({i} ×Xi) with

dom(f∗) = dom(f)∗ defined by f∗(i, (xj)j<i) = {i}×
∏
j<i f(xj).



Some examples

• The limited principle of omniscience is the function
LPO : NN → 2 such that LPO(p) = 0 iff ∀i p(i) = 0.

• lim : ⊆(NN)N → NN maps a convergent sequence in Baire
space to its limit.

lim is parallelizable, while LPO is not (and in fact L̂PO≡W lim).



Choice functions

Let X be a computable metric space and recall that A−(X) is the
space of its closed subsets represented by negative information.

CX : ⊆A−(X)⇒ X is the choice function for X: it picks from a
nonempty closed set in X one of its elements.

UCX : ⊆A−(X)→ X is the unique choice function for X: it picks
from a singleton (represented as a closed set) in X its unique
element (in other words, UCX is the restriction of CX to
singletons).

TCX : A−(X)⇒ X is the total continuation of the choice
function for X: it extends CX by setting TCX(∅) = X.

In general we have UCX ≤W CX ≤W TCX and, for example,
CN<W TCN and C2N ≡W TC2N .



Forms of choice on Baire space

It is important for us that UCNN <W CNN <W TCNN .

The strictness of the first inequality follows from classical facts:
there exists a computable tree T ⊆ N<N with no hyperarithmetic
paths, but if [T ] is countable (in particular if it is a singleton) then
all paths are hyperarithmetic.

The strictness of the second inequality follows from the fact that
to decide whether a tree is ill-founded we can first apply TCNN and
then check the result using LPO.



The Weihrauch lattice
and reverse mathematics

We can locate theorems in the Weihrauch lattice by looking at the
multi-valued functions they naturally translate into.

In most cases the Weihrauch lattice refines the classification
provided by reverse mathematics: statements which are equivalent
over RCA0 may give rise to functions with different Weihrauch
degrees.

Weihrauch reducibility is finer because requires both uniformity
and use of a single instance of the harder problem.

We have a good understanding of the connection between reverse
mathematics and the Weihrauch lattice for levels up to ACA0:

• computable functions correspond to RCA0;

• C2N corresponds to WKL0;

• lim and its iterations correspond to ACA0.



Arithmetical Transfinite Recursion

ATR is the function producing, for a well-order X, a jump
hierarchy along X.

Theorem (Kihara-M-Pauly)

UCNN ≡W ATR.

ATR2 is the function producing, for a linear order X, either a jump
hierarchy along X or a descending sequence in X.

Theorem (Goh)

UCNN <W ATR2<W CNN .



Comprehension functions around
ATR0 and Π1

1-CA0

Tr is the set of subtrees of N<N.
If T ∈ Tr then [T ] is the set of the infinite paths through T .

• Σ1
1-Sep : ⊆(Tr× Tr)N ⇒ 2N has domain
{ (Sn, Tn)n∈N | ∀n¬([Sn] 6= ∅ ∧ [Tn] 6= ∅) } and maps
(Sn, Tn)n∈N to ATR0

{ f ∈ 2N | ∀n([Sn] 6= ∅ → f(n) = 0) ∧ ([Tn] 6= ∅ → f(n) = 1) }.
• ∆1

1-CA is the restriction of Σ1
1-Sep to

{ (Sn, Tn)n∈N | ∀n([Sn] = ∅ ↔ [Tn] 6= ∅) }. < ATR0

• χΠ1
1

: Tr→ 2 such that χΠ1
1
(T ) = 0 iff T is ill-founded.

• Π1
1-CA = χ̂Π1

1
maps (Tn)n∈N to the characteristic function of

{n ∈ N | [Tn] 6= ∅ }. Π1
1-CA0

Theorem (Kihara-M-Pauly)

UCNN ≡W Σ1
1-Sep≡W ∆1

1-CA.



Comparability of well-orders

WO is the set of well-orders on N.

• CWO : WO×WO→ NN is the function that maps a pair of
well-orders to the order preserving map from one of them onto
an initial segment of the other. ATR0

• WCWO : WO×WO⇒ NN is the multi-valued function that
maps a pair of well-orders to the set of order preserving maps
from one of them to the other. ATR0

Theorem (Kihara-M-Pauly)

CWO≡W ŴCWO≡W UCNN .

Theorem (Goh)

WCWO≡W UCNN .



The perfect tree theorem
The Perfect Tree Theorem asserts that if T ∈ Tr, then either [T ] is
countable or T has a perfect subtree.

The conclusion of the theorem has the form A ∨B. To make it
into a problem we have different options:
• PTT1 : ⊆Tr⇒ Tr is the multi-valued function that maps a

tree with uncountably many paths to the set of its perfect
subtrees. ATR0

• List : ⊆Tr⇒ (NN)N is the multi-valued function that maps a
tree with no perfect subtree to a list of its paths. ATR0

• PTT2 : ⊆Tr⇒ Tr× (NN)N is the multi-valued function that
maps a tree to a pair (T ′, (pn)) such that either T ′ is a
perfect subtree of T or (pn) lists all elements of [T ]. ATR0

Theorem (Kihara-M-Pauly)

List≡W UCNN <W PTT1≡W CNN <W TCNN <W PTT2<W

<W TC∗NN ≡W PTT∗2<W Π1
1-CA.



Open determinacy

We consider two-player perfect information games where two
players alternate playing in N. Open determinacy asserts that if
the winning set for the first player is open, then one of the players
has a winning strategy.

Again there are different ways of making it into a problem:

• FindWSΣ : ⊆Tr⇒ Tr is the multi-valued function that maps
a tree T to the set of winning strategies for Player 1 in the
game where Player 1 wins if the sequence constructed by the
players /∈ [T ]. ATR0

• FindWSΠ : ⊆Tr⇒ Tr is the multi-valued function that maps
a tree T to the set of winning strategies for Player 2 in the
game above. ATR0

• DetΣ : Tr⇒ Tr× Tr is the multi-valued function that maps a
tree T to a pair of strategies for the two Players such that one
of them is winning in the game above. ATR0



Results about open determinacy

Theorem (Kihara-M-Pauly)

FindWSΣ≡W UCNN <W FindWSΠ≡W CNN <W

<W TCNN <W DetΣ<W TC∗NN ≡W Det∗Σ<W Π1
1-CA.



Recap

UCNN Σ1
1-Sep ∆1

1-CA
CWO WCWO List FindWSΣ

CNN PTT1 FindWSΠ

TCNN

PTT2 DetΣ

TC∗NN PTT∗2 Det∗Σ

Π1
1-CA

?

?

Goh studied also König’s duality theorem in this context, and
Kihara and Anglès D’Auriac have results about the functions
corresponding to Σ1

1-AC0 and Σ1
1-DC0.



Spaces of infinite sets

We work in the space [N]N of infinite subsets of N.
A member of [N]N can be identified with the strictly increasing
function that enumerates it.

If X ∈ [N]N then [X]N is the set of infinite subsets of X.

Notice that if f (increasingly) enumerates X, then
[X]N = { f · g | g is strictly increasing }.

Every [X]N, and in particular [N]N, is a closed subspace of NN.
Thus [X]N is a Polish space, and in fact is isometric to NN.



Homogeneous sets

If P ⊆ [N]N we let

H(P ) = {X ∈ [N]N | [X]N ⊆ P ∨ [X]N ∩ P = ∅ }
= { f ∈ [N]N | ∀g(f · g ∈ P ) ∨ ∀g(f · g /∈ P ) }.

The elements of H(P ) are called homogeneous sets for P .
If [X]N ⊆ P then X lands in P .
If [X]N ∩ P = ∅ then X avoids P .

Notice that a given P can have both homogeneous sets landing in
P and homogeneous sets avoiding P .

P is Ramsey if H(P ) 6= ∅, i.e. if there exist homogeneous sets for
P .



Which subsets of [N]N are Ramsey?

• Every clopen set is Ramsey (Nash-Williams)

• Every Borel set is Ramsey (Galvin-Prikry)

• Every analytic set is Ramsey (Silver)

• (ZFC + measurable cardinals) Every Σ1
2 set is Ramsey (Silver)

• (ZF + ADR) Every set is Ramsey (Prikry)



The reverse mathematics of the
infinite Ramsey theorem

• Every clopen set is Ramsey ATR0

• Every open set is Ramsey ATR0

• Every ∆0
2 set is Ramsey Π1

1-CA0

• Every Borel set is Ramsey Π1
1-TR0

• Every analytic set is Ramsey Σ1
1-MI0



Some observations about the open
Ramsey theorem

Fix P ⊆ [N]N open.

• The set of elements of H(P ) which avoid P is closed;
given a name 〈P 〉 for P it is easy to define a tree T〈P 〉 such
that [T〈P 〉] is precisely this set.

• The set of elements of H(P ) which land in P is Π1
1;

it can be Π1
1-complete.

The ATR0 proof of open determinacy in Simpson’s book proceeds
by assuming that there is no set avoiding P and using the
well-foundedness of T〈P 〉 to construct a set landing in P .

This proof is asymmetric: to find a set avoiding P it suffices to
find a path in T〈P 〉 (even if there are sets landing in P ), yet it gives
no clue about building a set landing in P when there exist sets
avoiding P .



Representing open and clopen sets

Σ0
1([N]N) is the represented space of open subsets of [N]N.

A name for P ∈ Σ0
1([N]N) is a list of finite strictly increasing

sequences (σi) such that X ∈ P if and only if ∃i σi @ X.

This representation is equivalent to representing [N]N \ P as an
element of A−([N]N).

∆0
1([N]N) is the represented space of clopen subsets of [N]N.

A name for D ∈∆0
1([N]N) consists of two names for members of

Σ0
1([N]N): one for D and one for [N]N \D.

This representation is equivalent to representing D and [N]N \D as
elements of A−([N]N).



Multi-valued functions associated to
the open Ramsey theorem

full Σ0
1-RT : Σ0

1([N]N)⇒ [N]N defined by Σ0
1-RT(P ) = H(P );

strong open FindHSΣ0
1

:⊆ Σ0
1([N]N)⇒ [N]N defined by

dom(FindHSΣ0
1
) = {P ∈ Σ0

1([N]N) | H(P ) ∩ P 6= ∅ } and

FindHSΣ0
1
(P ) = H(P ) ∩ P ;

strong closed FindHSΠ0
1

:⊆ Σ0
1([N]N)⇒ [N]N defined by

dom(FindHSΠ0
1
) = {P ∈ Σ0

1([N]N) | H(P ) * P } and

FindHSΠ0
1
(P ) = H(P ) \ P ;

weak open wFindHSΣ0
1

is the restriction of FindHSΣ0
1

to

{P ∈ Σ0
1([N]N) | H(P ) ⊆ P };

weak closed wFindHSΠ0
1

is the restriction of FindHSΠ0
1

to

{P ∈ Σ0
1([N]N) | H(P ) ∩ P = ∅ }.



Multi-valued functions associated to
the clopen Ramsey theorem

full ∆0
1-RT : ∆0

1([N]N)⇒ [N]N defined by
∆0

1-RT(D) = H(D);

strong FindHS∆0
1

:⊆∆0
1([N]N)⇒ [N]N defined by

dom(FindHS∆0
1
) = {D ∈∆0

1([N]N) | H(D) ∩D 6= ∅} and

FindHS∆0
1
(D) = H(D) ∩D;

weak wFindHS∆0
1

is the restriction of FindHS∆0
1

to

{D ∈∆0
1([N]N) | H(D) ⊆ D }.



Equivalences with UCNN

Theorem (M-Valenti)

UCNN ≡W wFindHSΣ0
1
≡W wFindHS∆0

1
≡W ∆0

1-RT.

To show ∆0
1-RT≤W wFindHS∆0

1
, given a name (D0, D1) for

D ∈∆0
1([N]N) we uniformly compute a name for

E = { f ∈ [N]N | ∃σ, τ ∈ D0(σaτ @ f) } ∪

{ f ∈ [N]N | ∃σ, τ ∈ D1(σaτ @ f) } ∈∆0
1([N]N).

Then H(E) = H(D) and H(E) ⊆ E and hence
wFindHS∆0

1
(E) = ∆0

1-RT(D).



wFindHSΠ0
1

is almost CNN

Theorem (M-Valenti)

UCNN <W wFindHSΠ0
1
≤W CNN ≡W C2N ? wFindHSΠ0

1
.



Equivalences with CNN

Theorem (M-Valenti)

CNN ≡W FindHS∆0
1
≡W FindHSΠ0

1
.



Σ0
1-RT is fairly strong

Theorem (M-Valenti)

Σ0
1-RT�W CNN and wFindHSΠ0

1
<W Σ0

1-RT.



FindHSΣ0
1

is very strong

Theorem (M-Valenti)

Σ0
1-RT<W FindHSΣ0

1
, TCNN × CNN <W FindHSΣ0

1
,

CNN ?Σ0
1-RT<W FindHSΣ0

1
and χΠ1

1
<W FindHSΣ0

1
.

Thus FindHSΣ0
1

escapes the levels of complexity found so far for
multi-valued functions connected to ATR0 and approaches
Π1

1-CA0. We do not know whether Π1
1-CA≤W FindHSΣ0

1
.

It is however true that the restatement of the open Ramsey
theorem arising from FindHSΣ0

1
is quite unnatural:

if P is open and not all homogenous sets avoid P ,
then there exists an homogenous set landing in P .



Recap

UCNN ,wFindHSΣ0
1
,wFindHS∆0

1
,∆0

1-RT

wFindHSΠ0
1

CNN ,FindHS∆0
1
,FindHSΠ0

1

TCNN
Σ0

1-RT

C2N ?Σ
0
1-RT

FindHSΣ0
1



Arithmetic Weihrauch reducibility

Let f :⊆ X ⇒ Y , g :⊆ Z ⇒W be partial multi-valued functions
between represented spaces. We say that f is arithmetically
Weihrauch reducible to g, and we write f ≤aW g if there are
arithmetic Φ,Ψ : ⊆NN ⇒ NN such that for all G ` g we have that
F ` f where F (p) = Ψ(p,GΦ(p)).
Here a function F :⊆ NN → NN is arithmetic if F ≤W lim(n) for
some n ∈ N.

It is immediate that f ≤W g implies f ≤aW g.

Arithmetic Weihrauch reducibility was introduced by Kihara-Anglès
D’Auriac and independently by Goh.

Perhaps this is the right reducibility for multi-valued functions
above ACA0.



Some arithmetic results

Theorem (M-Valenti)

• wFindHSΠ0
1
≡aW CNN ;

• CNN <aW Σ0
1-RT ≡aW TCNN ;

• Σ0
1-RT <aW FindHSΣ0

1
.



Recap under arithmetic Weihrauch
reducibility

UCNN ,wFindHSΣ0
1
,wFindHS∆0

1
,∆0

1-RT

CNN ,FindHS∆0
1
,FindHSΠ0

1
,wFindHSΠ0

1

TCNN

Σ0
1-RT

FindHSΣ0
1



Perfect kernels
The study of multi-valued functions arising from theorems
equivalent to Π1

1-CA0 is in its infancy.

Let PKTr : Tr→ Tr be the function that maps a tree T to its
perfect kernel, i.e. the largest perfect subtree of T . Π1

1-CA0

Theorem (Hirst)

Π1
1-CA≡W PKTr.

Let PK2N : A−(2N)→ A−(2N) and PKNN : A−(NN)→ A−(NN)
be the functions mapping a closed set C to its perfect kernel, i.e.
the largest perfect closed subset of C. Π1

1-CA0

Theorem (Cipriani-M-Valenti)

PK2N ≡W PKNN <W Π1
1-CA and Π1

1-CA≤W lim ?PKNN . Thus
PKNN �W CNN and Π1

1-CA ≡aW PKTr ≡aW PK2N ≡aW PKNN .

We do not know whether CNN ≤W PKNN .



The end

Thank you for your attention!
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